Mathematics of Sparsity and Entropy: Axioms, Core Functions and Sparse Recovery

نویسندگان

  • Giancarlo Pastor
  • Inmaculada Mora-Jim'enez
  • Riku Jantti
  • Antonio J. Caamano
چکیده

Sparsity and entropy are pillar notions of modern theories in signal processing and information theory. However, there is no clear consensus among scientists on the characterization of these notions. Previous efforts have contributed to understand individually sparsity or entropy from specific research interests. This paper proposes a mathematical formalism, a joint axiomatic characterization, which contributes to comprehend (the beauty of) sparsity and entropy. The paper gathers and introduces inherent and first principles criteria as axioms and attributes that jointly characterize sparsity and entropy. The proposed set of axioms is constructive and allows to derive simple or core functions and further generalizations. Core sparsity generalizes the Hoyer measure, Gini index and pq-means. Core entropy generalizes the Rényi entropy and Tsallis entropy, both of which generalize Shannon entropy. Finally, core functions are successfully applied to compressed sensing and to minimum entropy given sample moments. More importantly, the (simplest) core sparsity adds theoretical support to the `1-minimization approach in compressed sensing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Signal Recovery via Generalized Entropy Functions Minimization

Compressive sensing relies on the sparse prior imposed on the signal to solve the ill-posed recovery problem in an under-determined linear system. The objective function that enforces the sparse prior information should be both effective and easily optimizable. Motivated by the entropy concept from information theory, in this paper we propose the generalized Shannon entropy function and Rényi e...

متن کامل

A Sharp Sufficient Condition for Sparsity Pattern Recovery

Sufficient number of linear and noisy measurements for exact and approximate sparsity pattern/support set recovery in the high dimensional setting is derived. Although this problem as been addressed in the recent literature, there is still considerable gaps between those results and the exact limits of the perfect support set recovery. To reduce this gap, in this paper, the sufficient con...

متن کامل

On characterizations of the fully rational fuzzy choice functions

In the present paper, we introduce the fuzzy Nehring axiom, fuzzy Sen axiom and weaker form of the weak fuzzycongruence axiom. We establish interrelations between these axioms and their relation with fuzzy Chernoff axiom. Weexpress full rationality of a fuzzy choice function using these axioms along with the fuzzy Chernoff axiom.

متن کامل

CAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS

In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...

متن کامل

A NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM

Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1501.05126  شماره 

صفحات  -

تاریخ انتشار 2015