Mathematics of Sparsity and Entropy: Axioms, Core Functions and Sparse Recovery
نویسندگان
چکیده
Sparsity and entropy are pillar notions of modern theories in signal processing and information theory. However, there is no clear consensus among scientists on the characterization of these notions. Previous efforts have contributed to understand individually sparsity or entropy from specific research interests. This paper proposes a mathematical formalism, a joint axiomatic characterization, which contributes to comprehend (the beauty of) sparsity and entropy. The paper gathers and introduces inherent and first principles criteria as axioms and attributes that jointly characterize sparsity and entropy. The proposed set of axioms is constructive and allows to derive simple or core functions and further generalizations. Core sparsity generalizes the Hoyer measure, Gini index and pq-means. Core entropy generalizes the Rényi entropy and Tsallis entropy, both of which generalize Shannon entropy. Finally, core functions are successfully applied to compressed sensing and to minimum entropy given sample moments. More importantly, the (simplest) core sparsity adds theoretical support to the `1-minimization approach in compressed sensing.
منابع مشابه
Sparse Signal Recovery via Generalized Entropy Functions Minimization
Compressive sensing relies on the sparse prior imposed on the signal to solve the ill-posed recovery problem in an under-determined linear system. The objective function that enforces the sparse prior information should be both effective and easily optimizable. Motivated by the entropy concept from information theory, in this paper we propose the generalized Shannon entropy function and Rényi e...
متن کاملA Sharp Sufficient Condition for Sparsity Pattern Recovery
Sufficient number of linear and noisy measurements for exact and approximate sparsity pattern/support set recovery in the high dimensional setting is derived. Although this problem as been addressed in the recent literature, there is still considerable gaps between those results and the exact limits of the perfect support set recovery. To reduce this gap, in this paper, the sufficient con...
متن کاملOn characterizations of the fully rational fuzzy choice functions
In the present paper, we introduce the fuzzy Nehring axiom, fuzzy Sen axiom and weaker form of the weak fuzzycongruence axiom. We establish interrelations between these axioms and their relation with fuzzy Chernoff axiom. Weexpress full rationality of a fuzzy choice function using these axioms along with the fuzzy Chernoff axiom.
متن کاملCAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کاملA NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1501.05126 شماره
صفحات -
تاریخ انتشار 2015